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Metrics derived from the diffusion tensor, such as fractional anisotropy (FA) and mean diffusivity (MD) have
been used in many studies of postnatal brain development. A common finding of previous studies is that these
tensor-derived measures vary widely even in healthy populations. This variability can be due to inherent inter-
individual biological differences as well as experimental noise. Moreover, when comparing different studies,
additional variability can be introduced by different acquisition protocols. In this study we examined scans
of 61 individuals (aged 4–22 years) from the NIH MRI study of normal brain development. Two scans were
collected with different protocols (low and high resolution). Our goal was to separate the contributions of
biological variability and experimental noise to the overall measured variance, as well as to assess potential
systematic effects related to the use of different protocols. We analyzed FA and MD in seventeen regions of
interest. We found that biological variability for both FA and MD varies widely across brain regions; biological
variability is highest for FA in the lateral part of the splenium and body of the corpus callosum along with the
cingulum and the superior longitudinal fasciculus, and for MD in the optic radiations and the lateral part of the
splenium. These regions with high inter-individual biological variability are the most likely candidates for
assessing genetic and environmental effects in the developing brain. With respect to protocol-related effects,
the lower resolution acquisition resulted in higherMD and lower FA values for themajority of regions compared
with the higher resolution protocol. However, the majority of the regions did not show any age–protocol
interaction, indicating similar trajectories were obtained irrespective of the protocol used.

Published by Elsevier Inc.
Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance imaging
technique that allows in vivo characterization of tissue (Basser et al.,
1994; Pierpaoli et al., 1996) and has been used extensively to analyze
brain white matter. DTI has been used to study healthy development
(Huppi et al., 1998; Lebel et al., 2008) as well as neurological and
psychiatric disorders that affect brain white matter (Cassol et al.,
2004; Walker et al., 2013). Several pediatric studies have reported
normative developmental trajectories for quantities of interest derived
from diffusion tensors (Mukherjee et al., 2001; Barnea-Goraly et al.,
2005; Snook et al., 2005; Hermoye et al., 2006; Ashtari et al., 2007;
Bonekamp et al., 2007; Eluvathingal et al., 2007; Lebel et al., 2008;
Faria et al., 2010; Lebel and Beaulieu, 2011; Sadeghi et al., 2013b).
A common finding in these studies has been a rapid increase of fraction-
al anisotropy, FA, and a rapid decrease of mean diffusivity, MD (defined
as trace of the diffusion tensor/3), during early childhood (Hermoye
et al., 2006; Faria et al., 2010; Sadeghi et al., 2013b) with continued
development into adulthood (Ashtari et al., 2007; Lebel et al., 2008;
Lebel and Beaulieu, 2011). Despite the general trend, it is evident that
these derived tensor measures vary widely in healthy populations
(Bonekamp et al., 2007; Lebel et al., 2008; Lebel and Beaulieu, 2011),
making clinical diagnosis based on diffusion metrics a challenging
task. This variability can be due to inherent inter-individual biological
differences as well as experimental noise. Moreover, potential bias
can be introduced by different acquisition protocols (e.g., different
resolution, signal to noise ratio (SNR)) (Pierpaoli and Basser, 1996;
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Jones et al., 1999; Skare et al., 2000; Jones, 2004; Gao et al., 2009),
scanner manufacturer (e.g., differences in gradient calibrations and
gradient non-linearities) (Pfefferbaum et al., 2003; Vollmar et al.,
2010) and magnetic field strength (e.g. different levels of echo planar
imaging (EPI) distortions), to name a few confounding factors.
The goal of this study is to separate the contribution of biological
inter-individual differences and experimental noise in the observed
variance of diffusion metrics.

We measure DTI metrics, specifically FA and MD, in several brain
regions to characterize brain development from childhood to adulthood
using publicly available data from the NIH MRI Study of Normal Brain
Development (PedsMRI) (http://pediatricmri.nih.gov). To achieve our
goal of separating the observed variability of diffusion indices into
biological variability and experimental noise we included only subjects
that had repeated scans. We reason that variability due to true
inter-individual biological differences should be highly correlated
between scans, while effects due to experimental noise should be
uncorrelated. Dividing the variance of these metrics into these compo-
nents has important implications: if the observed variability is mainly
due to experimental noise, then experimental design and quality
of data acquisition should be improved. On the other hand, if high
variability stems from intrinsic differences in brain structure between
individuals, then its association to inter-individual behavioral and
cognitive differences should be investigated.

Materials and methods

Subjects

Subjects included in the PedsMRI study were recruited to produce a
database representative of the U.S. population for race, ethnicity, and
socio-economic status according to the 2000 census. Subjects were to
be typically developing children, with strict inclusion/exclusion criteria.
Included subjects underwent an MRI scanning session as well as an
extensive cognitive and behavioral assessment. All subjects received
anatomical (T1-weighted, T2-weighted and proton density weighted)
scans. If the subject agreed, DTI and MRS data were also acquired. The
PedsMRI design was mixed cross-sectional and longitudinal; subjects
were asked to return annually if they continued to pass inclusion/
exclusion criteria. In this work, we used a cross-sectional subset of the
data including only individuals that underwent two different diffusion
protocols during the same scanning session or within a week. In total,
61 subjects (age range 4.1–22.2 years, mean age = 14.2, female: 29,
male: 32) from a single site were included in our study.

Image acquisition

TheMRI scanner used in this study was a 1.5T system from Siemens.
The DTI data were acquired with a spin echo EPI sequence. The DTI
protocol originally included a low resolution acquisition, which we
refer to as conventional DTI (cDTI). The cDTI protocol utilized 6 diffusion
gradient directions with 4 repetitions at b = 1000 s/mm2 and 4 non-
weighted images (b = 0 s/mm2) with isotropic voxel size of 3 mm3.
The field of view was either 384 mm with TE = 90 ms, or 192 mm
with TE = 75 ms, TR = 9 s with full echo acquisition. Subsequently an
improved DTI acquisition protocol was added for subjects who could
tolerate a longer scan. We refer to this protocol as expanded DTI
(eDTI). The eDTI protocol was multi-shell using a maximum b-value of
1100 s/mm2, (b = 0 n = 10, b = 100 n = 10, b = 300 n = 10, b =
500 n = 10, b = 800 n = 30, b = 1100 n = 50), where n represents
number of volumes for each b value. However, in this study we only
used volumes that were acquired at b = 0 or b = 1100 to have similar
b values to the cDTI protocol. The voxel size for the eDTI protocol was
2.5 mm3. The field of view was 240 mm with TE = 87 ms,TR = 7.8 s
with full echo acquisition. T2 weighted (T2W) images were also
acquired for each subject with TR = 3500 ms, TE1 = 17 ms, TE2 =
119 ms, axial slices, 80–90 slices of 2 mm thickness to cover the apex
of the head to the bottom of the cerebellum. The head coil was the
same single channel coil for all acquisitions. Total acquisition time was
about 4–7 min for the cDTI protocol and about 20 min for the eDTI
protocol.

Data processing

The anterior commissure (AC) and posterior commissure (PC) were
manually identified on T2W images; subsequently AC–PC was aligned
usingMIPAV software (Bazin et al., 2007). Individual diffusionweighted
images were processed using the TORTOISE pipeline (Pierpaoli et al.,
2010a) to reduce the effects of motion and eddy current distortions
(Rohde et al., 2004). EPI distortion correction was performed using
nonlinear B-splines registration of diffusion and non-diffusionweighted
images (b= 0) to the individual's T2W image (Wu et al., 2008). All the
corrections were done in the subject's native space, with a single inter-
polation step, and appropriate rotations were applied to the b-matrix
(Rohde et al., 2004).

Tensor estimation was performed after correction for motion, eddy
current, and EPI artifacts. Nonlinear tensor estimation was used for
eDTI scans, whereas, informed robust estimation of tensors by outlier
rejection (iRESTORE) (Chang et al., 2012), was used for tensor fitting
of cDTI scans. iRESTORE is specifically designed for datasets acquired
with low redundancy (fewer than 30–40 diffusion weighted image
volumes), which makes it appropriate for the cDTI data consisting of
only 28 image volumes.

2.3.1. Spatial normalization
All the tensors were registered to a common coordinate space in a

two step process previously described by Pierpaoli et al.(2010b). Briefly,
the template creation included the following steps: first, age-specific
average brain tensor templates (minimum of 10 scans) were created
using the nonlinear tensor registration software, DTI-TK (Zhang
et al., 2007). Subsequently, all the age-specific templates were
registered to the template from 18 to 21 year old subjects and the
corresponding transformations were saved. All tensors for all
subjects included in our study were registered to the template
from 18 to 21 year old subjects by combining the deformations of
individual subject to its age-specific template and of the age-
specific template to the template from 18 to 21 year old subjects.
This approach was used to warp the diffusion tensor of each subject
into the template from 18 to 21 year old subjects with one interpola-
tion ensuring minimal degradation of the quality of the tensor
metrics. Finally, MD and FA maps were recomputed for each subject
in this normalized space from the warped tensors.

Regions of interest
Seventeen regions of interest (ROIs)were drawn by an expert on the

template from 18 to 21 year old subjects in both gray and white matter
regions as shown in Fig. 1. The white matter ROIs were drawn in com-
missural, projection, and association fiber tracts. ROIs of commissural
tracts include the body of the corpus callosum (BCC), medial and lateral
parts of the genu, and the splenium of the corpus callosum (GCC and
SCC). ROIs of projection fiber tracts consist of the corticospinal tract
(CST) at the level of the cerebellar peduncle; medial lemniscus (ML);
middle cerebellar peduncle (MCP); anterior limb, genu, and posterior
limb of the internal capsule (ALIC, GIC, and PLIC); and optic radiations.
ROIs of association fiber tracts include the cingulum and the superior
longitudinal fasciculus (SLF). The gray matter ROIs include the caudate,
putamen, and thalamus. All regions were drawn separately in both the
right and left hemispheres of the template from 18 to 21 year-old sub-
jects. FA and MD within each ROI for all subjects were extracted from
the respective maps spatially normalized to the template space. We de-
cided to extract the individual ROI values in the warped images rather
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Fig. 1. Regions of interest are shown overlaid on the FAmap computed from the template of 18–21 year-old subjects. Note that the ROIs are 3D structures; however, here axial slices are
used as an example. The following ROIs were analyzed: 1— superior longitudinal fasciculus (SLF), 2— cingulum, 3— body of corpus callosum (BCC), 4— lateral part of spleniumof corpus
callosum (SCC lateral), 5 — middle part of splenium of corpus callosum (SCC medial), 6 — anterior limb of internal capsule (ALIC), 7 — genu of internal capsule (GIC), 8 — posterior
limb of internal capsule (PLIC), 9— optic radiations, 10— lateral part of genu of corpus callosum (GCC lateral), 11—middle part of genu of corpus callosum (GCCmedial), 12— caudate,
13— putamen, 14— thalamus, 15— corticospinal tract (CST), 16— middle cerebellar peduncle (MCP), and 17-medial lemniscus (ML).
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than warping the ROI into the subject's native space, as the former ap-
proach has been shown to be preferable (Irfanoglu et al., 2014).

Theoretical basis of the statistical model
We use linear mixed effects (LME) (Laird andWare, 1982) to model

age-related changes of FA and MD, to model protocol differences (cDTI
and eDTI), and to account for within-subject correlation (cDTI and
eDTI scans of same subject). In the mixed effects model, the observed
data are assumed to be a combination of fixed effects (parameters
associated with the entire population) and random effects (individual
deviations from the average parameters).

For a given ROI, the diffusion metric y= {FA,MD} of scan j, subject i,
and protocol k ∈ {cDTI, eDTI} is modeled as:

yi jk ¼ Ak þ Bk � Ageþ bi þ ei jk;

where Ak and Bk are parameters to be estimated describing the intercept
and slope of the mean value of the diffusion metric of interest for the
population as a function of age.

Individual variations are modeled by inclusion of random effects,
bi � N 0;σ2

b

� �
, in the model. The fact that this term is the same

regardless of acquisition protocol and scan replicate (k and j do not
appear) satisfies our assumption that biologically determined
variability should be highly correlated between scans of the same
subject. Inter-subject biological variability is captured by σb

2.
Noise is modeled as ei jk � N 0;σ2

e

� �
and is independent of bi.

Although cDTI and eDTI protocols may have different noise char-
acteristics, a single σe is used to describe the overall estimate of the ex-
perimental noise. We used Monte Carlo simulation (see Sections 2.4
and 3.1) to verify that using a single σe representing the pooled variance
of cDTI and eDTI does not have negative effects on the estimation of the
parameters of themodel. In addition, inclusion of the two separate σe for
each protocol can cause the model to be over-parameterized, thus
creating problems in the estimation.
Application of the statistical model
The general formulation of the model would estimate the intercept

at age 0 and result in high correlation of estimates of the slope and the
corresponding intercept. We can remove this correlation by centering
the data. In this case, we model the FA and MD as a linear function of
Age–mean(Age), where the mean(Age) of our population is 14.2
years. In this model, the estimated intercept for FA and MD is at
14.2 years rather than at 0.

For structures present in both brain hemispheres, left and right ROIs
were defined and measurements were first evaluated separately for
differences in developmental trajectories. Significant differences of
small magnitude were found in the intercept for several regions, but
no differences in slope of FA or MD were found between right and left
regions. However, because evaluation of right and left differences was
not a goal of this study, given that small differences in intercept may
be an unavoidable consequence of ROI placement, and because there
were no differences in the developmental trajectories from the right
and left regions, right and left measurements were combined in our
analysis for statistical parsimony.

Intercept and slope (A and B parameters) of the mean value for MD
and FA as a function of age for each region of interest were analyzed
with the LME model. We tested for statistical differences in the intercept
and slope between the two acquisition protocols. P-values were obtained
using the conditional t-test provided in the R1 nlme package (Pinheiro
et al., 2012). Subsequently, p-values were adjusted using false discovery
rate procedure to correct for multiple comparisons (Benjamini and
Hochberg, 1995).
Validation of the statistical model

We performed Monte Carlo simulations to validate the model and
investigate its robustness in the range of experimental conditions

http://r-project.org


483N. Sadeghi et al. / NeuroImage 109 (2015) 480–492
typical of our data (SNR, differences between protocols in the test–
retest replicates, relatively small number of subjects, etc.). For a
large range of biological variability and experimental noise values,
we tested the accuracy (potential bias effects) and uncertainty (standard
error) of the estimated A, B, and biological variability term for the
diffusion metric of interest: MD and FA. In particular, we covered all
values found in the ROIs of the population. The Monte Carlo simulations
consisted of 1000 replicates of our real experiment with 61 subjects and
2 scans per subject, using different noise realizations from the given
noise distribution. For statistical parsimony, in our model we assumed
that the experimental noise for all scans was drawn from the same
distribution. However, in our experimental setup, the repeated scans
were acquired with different protocols and, therefore, were likely to
have different noise characteristics. Again, we used Monte Carlo simula-
tions to assess if having different experimental noise distributions for
repeated scans would negatively affect our ability to estimate both
fixed effects (A and B) and biological variability (σb). We first used the
method proposed by Chang et al.(2012), to measure the SNR of the
DWIs used in the cDTI and eDTI protocol. Given the measured SNR,
we then calculated the expected variance of FA and MD due to white
noise in each ROI using the approach proposed by Pierpaoli and
Basser(1996). The results of this analysis indicate that, taking an average
of all ROI values, the experimental noise of cDTI is expected to be 3.2
(range 2.7–3.7) and 2.9 (range 2.3–3.6) times that of eDTI for MD and
FA respectively. Finally, we performed simulations in which the added
noise was sampled from two distributions so that σ2

ecDTI ¼ ασ2
eeDTI to

assess the effects on the estimated parameters mentioned above.We re-
port results for α = 4, which is higher than what we found in any ROI.
We compared the dual distribution resultswith those obtained assuming
a single noise distribution for both protocols with the same overall
variance; in this simulation 1000 replicates were also used.
Results

Monte Carlo simulations

For bothMD and FA, the simulation showed no bias in the estimated
fixed effects: A and B. Even for the ROIs with the largest experimental
noise and biological variability, the simulation showed that the expect-
ed uncertainty in the intercept should be less than 2% for both MD and
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Fig. 2. Plots of the estimated mean and standard error of the intercept term, parameter A
of A of 755 μm2/s.
FA. The uncertainty in the slope was much higher, reaching 57% for MD
and 54% for FA. For example, Fig. 2 shows the result of the simulation for
the intercept for MD assuming a true value of A of 755 μm2/s, which is
the average for all ROIs we consider. Fig. 3 shows the result of the sim-
ulation for the slope for MD assuming a true value of B of −3.52 μm2/s
per year, which is the average for all the ROIs we consider.

Fig. 4 shows the simulation results for the effects on the estimated
biological variability for MD. The panel on the left shows that the
estimated biological variability is generally unbiased but it is slightly
overestimatedwhen biological variability is close to 0 and experimental
noise is larger by a factor of approximately 10. The right panel shows
that the standard error (SE) of the estimated biological variability (σb)
is a linear function of the true σb when experimental noise is small. As
noise increases, SE of the estimated σb also increases but its dependence
on the value of the σb decreases. The standard error of estimated
biological σb can be quite high for high noise levels, in particular if the
biological variability contribution to total variance is small.

We compared the results of using two protocol dependent distribu-
tions for experimental noise in our simulation to those obtained by
assuming a single noise distribution for both protocols with the same
overall variance. We did not detect any differences in the estimates of
mean and the slope of diffusion metrics between the two simulations.
Because we used a range of biological variability in our simulation,
we used regression to evaluate whether different experimental noise
distributions for repeated scans would introduce a bias in the estimate
of biological variability. We obtained a coefficient of determination, r2,
of .99974 for the estimate of biological variability of MD; this result
indicates a very goodmatch between the results obtainedwith dual dis-
tribution for experimental noise and those with only one distribution.
The intercept and slope for the regression line were 1.0058
and −0.3118, respectively. For FA, r2 = .99959, intercept = 1.002,
and slope = −0.0044. Again, indicating a very good match between
using two separate distributions for experimental noise vs. using only
one. Overall, our simulations indicate that assuming a single distribu-
tion for experimental noise does not negatively affect our estimates of
intercept, slope, and biological variability for either FA or MD.

Effect of age

The estimates of the intercept and slope for FA are presented for cDTI
and eDTI scans in Table 1. For both protocols, FA showed a significant
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Fig. 3. Plots of the estimated mean and standard error of the slope, parameter B in the model, for MD. The simulation results are computed for an assumed true value
of B of −3.52 μm2/s per year.
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increase from 5 to 21 years. The FA increase with age was statistically
significant in more than half of white matter regions for both cDTI and
eDTI scans (slope is significantly different from zero) and all graymatter
regions. However, there were large differences in magnitude of the
slope across regions. The steepest changes were found in the cingulum
and SLF, in the CST (in eDTI), and in the BCC. Most white matter regions
showed similar trends between cDTI and eDTI scans; however, the
lateral part of the splenium of the CC showed a significant increase in
FA with age in eDTI but not in cDTI. Plots for all ROIs are provided in
Appendix A.

The estimates of the intercept and slope for MD are presented in
Table 2, and the corresponding plots for all ROIs are provided in
Appendix B. A majority of white matter regions showed a significant
decrease in MD in the cDTI scans, and all of the white matter regions
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Fig. 4. Plots of estimated σb and
except MCP showed a significant decrease in MD in the eDTI scans.
Also, all gray matter regions showed a significant decrease in MD in
both protocols. As observed for FA, the magnitude of the slope of the
effect of age varied across regions. A large decrease of MD with age was
observed in the BCC and the lateral part of SCC for both cDTI and eDTI pro-
tocols. A large decline in MD was observed for CST in the eDTI scan. In
general, both protocols showed similar age-effect for MD with a few ex-
ceptions, the following regions did not show a significant decrease in
MD with age in the cDTI protocol while the age effect was significant in
the eDTI protocol: GCC (lateral), CST, and ML. The GCC (medial) showed
no significant age effect in FA, while there was a significant decrease in
MD. As an example of these atypicalfindingswe show in Fig. 5 the age de-
pendence plot of FA andMD forML. A significant decrease inMDwith age
was found in this region for eDTI but not for cDTI.
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Table 1
Fractional Anisotropy (FA).

cDTI eDTI

ROI Intercept (SE) Slopea (SE) qb Intercept (SE) Slopea (SE) qb

White matter regions (×10−3) ×10−3 (×10−3) (×10−3) ×10−3 (×10−3)

GCC (medial) 0.88(4.12) 0.57(0.92) 0.61 0.87(4.12) −0.34(0.92) 0.76
GCC (lateral) 0.86(3.64) 0.32(0.81) 0.74 0.84(3.64) 1.01(0.81) 0.27
BCC 0.63(5.81) 5.11(1.30) b .01* 0.64(5.81) 4.69(1.30) b .01*
SCC (medial) 0.87(5.28) −1.05(1.18) 0.46 0.86(5.28) 0.53(1.18) 0.74
SCC (lateral) 0.80(6.53) 2.13(1.46) 0.23 0.79(6.53) 3.42(1.46) 0.04*
ALIC 0.54(4.16) 4.79(0.93) b .01* 0.56(4.16) 3.83(0.93) b .01*
GIC 0.67(3.20) 4.04(0.72) b .01* 0.67(3.20) 2.75(0.72) b .01*
PLIC 0.67(3.31) 0.80(0.74) 0.38 0.67(3.31) 0.21(0.74) 0.78
Optic radiations 0.56(5.03) 1.33(1.13) 0.34 0.59(5.03) 2.34(1.13) 0.06
Cingulum 0.60(5.86) 6.44(1.31) b .01* 0.59(5.86) 6.38(1.31) b .01*
SLF 0.63(5.80) 5.28(1.30) b .01* 0.63(5.80) 4.89(1.30) b .01*
CST 0.72(4.16) 2.27(0.93) 0.03* 0.70(4.16) 4.89(0.93) b .01*
MCP 0.76(3.25) −1.89(0.73) 0.02* 0.77(3.25) −1.67(0.73) 0.04*
ML 0.57(4.99) −0.12(1.12) 0.92 0.58(4.99) 2.13(1.12) 0.08

Gray matter regions
Caudate 0.19(2.67) 2.03(0.60) b .01* 0.19(2.67) 1.52(0.60) 0.03*
Putamen 0.12(1.78) 2.73(0.40) b .01* 0.09(1.78) 2.09(0.40) b .01*
Thalamus 0.29(2.09) 2.19(0.47) b .01* 0.28(2.09) 2.20(0.47) b .01*

a Slope changes are per year.
b q-values of age-effect (slope different than zero) are based on the false discovery rate adjustment of p-values.
* Indicates differences were significant at q b 0.05.

485N. Sadeghi et al. / NeuroImage 109 (2015) 480–492
Protocol bias

Differences in the intercept and slope between cDTI and eDTI
are summarized in Table 3. Approximately half of the ROIs showed a
significant difference in the intercept of the FA trajectory between the
two protocols, whereas no region showed significant slope differences.
ForMD, all regionswith the exception of lateral parts of theGCC showed
a significant difference in the intercept, with the eDTI intercept being
consistently lower than the cDTI one. Only cingulum, GIC, SLF, and CST
showed significant differences in the slope. The lower intercept for
eDTI may be due to differences in CSF partial volume contamination:
MD of CSF is much higher than the parenchymal MD and the eDTI
Table 2
Mean Diffusivity (MD).

cDTI

ROI Intercept (SE) Slopea (SE)

White matter regions ×10−6 mm2 s−1

GCC (medial) 739(4.2) −3.67(0.95)
GCC (lateral) 741(6.3) −1.11(1.40)
BCC 887(8.6) −7.73(1.93)
SCC (medial) 717(6.5) −4.06(1.46)
SCC (lateral) 763(10.4) −6.62(2.33)
ALIC 761(2.6) −3.41(0.59)
GIC 711(2.7) −2.99(0.61)
PLIC 748(2.4) −2.54(0.54)
Optic radiations 902(8.9) −4.72(1.98)
Cingulum 762(2.9) −5.08(0.66)
SLF 759(3.0) −4.63(0.68)
CST 874(6.5) −2.99(1.45)
MCP 769(3.1) 0.25(0.69)
ML 806(3.8) −1.39(0.85)

Gray matter region
Caudate 756(2.9) −4.41(0.65)
Putamen 745(2.0) −3.10(0.45)
Thalamus 769(2.0) −3.21(0.45)

a Slope changes are per year.
b q-Values of age-effect (slope different than zero) are based on the false discovery rate adju
* Indicates differences were significant at q b 0.05.
scans have higher resolution and, therefore, would suffer less from
CSF partial volume contamination.

Fig. 6 shows the estimated trajectories of FA and MD for the PLIC,
as an example of a region where we can see clear differences in the in-
tercept between eDTI and cDTI (forMD), but no differences in the slope.
Overall variability

Once the effects of age and protocol are taken into account, we can
examine the remaining variability, which should be due to experimen-
tal noise and biological inter-subject differences. The overall variance
eDTI

qb Intercept (SE) Slopea (SE) qb

×10−6 mm2 s−1

b .01 * 691(4.2) −2.00(0.95) 0.04 *
0.46 741(6.3) −3.41(1.40) 0.03 *
b .01 * 832(8.6) −6.73(1.93) b .01 *
0.01 * 683(6.5) −4.21(1.46) 0.01 *
0.01 * 738(10.4) −5.19(2.33) 0.04 *
b .01 * 746(2.6) −1.89(0.59) b .01 *
b .01 * 686(2.7) −1.31(0.61) 0.04 *
b .01 * 705(2.4) −1.94(0.54) b .01 *
0.03 * 809(8.9) −4.36(1.98) 0.04 *
b .01 * 713(2.9) −3.30(0.66) b .01 *
b .01 * 701(3.0) −2.64(0.68) b .01 *
0.05 845(6.5) −8.44(1.45) b .01 *
0.71 670(3.1) −0.73(0.69) 0.29
0.12 740(3.8) −3.87(0.85) b .01 *

b .01 * 705(2.9) −3.04(0.65) b .01 *
b .01 * 723(2.0) −2.15(0.45) b .01 *
b .01 * 735(2.0) −3.20(0.45) b .01 *

stment of p-values.
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was highly variable across regions. Gray matter regions showed an
overall low variability (σb

2 + σe
2) for both FA and MD (Fig. 7).

In addition to gray matter regions, internal capsule regions,
cingulum, MCP, and SLF showed low variability in MD. Whereas,
SCC (lateral) and optic radiations showed very high overall variability
in MD as shown by the height of the bars in Fig. 7. SCC (lateral) also
showed the highest variability in FA and optic radiation was among re-
gions with relatively high variability. Other regions such as cingulum,
SLF, SCC (medial), and BCC also showed high overall variability.

Biological variability and experimental noise

The mixed effects model allows analysis of variability in terms of
biological variability, σb

2, and experimental noise, σe
2. Fig. 7 shows the

sources of variability for FA and MD (see Appendix C for sources of var-
iability with respect to axial diffusivity (AD) and radial diffusivity (RD)).
Regions that showed large biological variability for FA relative to other
regions are BCC, SCC (medial and lateral), optic radiations, cingulum,
and SLF. For MD, BCC, SCC (lateral), and optic radiations had large sub-
ject variability. Cingulum and SLF showed relatively large biological var-
iability for FA, but not for MD. ML, CST, and GCC (medial and lateral)
were among the regions with the highest levels of experimental noise
Table 3
Differences between cDTI and eDTI (eDTI-cDTI) in FA and MD.

ROI
White matter
regions

FA MD

Intercept
differencea

Slope
difference

Intercept
differencea

Slope
difference

×10−3 ×10−3 ×10−6 mm2 s−1 ×10−6 mm2 s−1

GCC (medial) −7.77 −0.91 −48.46* 1.67
GCC (lateral) −21.19* 0.69 0.09 −2.29
BCC 4.59 −0.42 −55.54* 0.99
SCC (medial) −9.16* 1.59 −33.76* −0.15
SCC (lateral) −9.10 1.29 −24.94* 1.43
ALIC 19.36* −0.96 −15.19* 1.52
GIC 2.06 −1.28 −25.24* 1.68*
PLIC −3.39 −0.59 −42.49* 0.60
Optic radiations 31.84* 1.00 −93.09* 0.36
Cingulum −13.25* −0.07 −49.22* 1.79*
SLF −4.32 −0.39 −58.29* 1.99*
CST −15.87* 2.62 −28.13* −5.46*
MCP 12.67* 0.22 −99.18* −0.98
ML 11.92 2.25 −66.35* −2.48

Gray matter regions
Caudate 0.63 −0.51 −50.74* 1.36
Putamen −24.51* −0.64 −21.93* 0.95
Thalamus −6.16* 0.01 −34.45* 0.01

a Intercept is calculated at mean age (14.2 years).
* Indicates differences were significant at q b 0.05 based on the false discovery rate

adjustment of p-values.
for FA. GCC (lateral), SCC (lateral), CST, andMLwere among the regions
with the largest levels of noise for MD. These areas have been reported
as having a high percentage of artifactual data points (outliers) in the
DWIs (Pierpaoli et al., 2003; Walker et al., 2011).

Discussion

In this study, we proposed a methodological framework to allow
separating the contributions of biological variability and experimental
noise from the overall variance of diffusion MRI study in a population
using a linear mixed effects model. The key idea was that effects
pertaining to the biology of each subject should be highly correlated
across repeated scans, while experimental noise should not be correlat-
ed. Repeated scans are not common in pediatric studies; however, here
we took advantage of the NIHMRI Study of Normal Brain Development,
which has repeated scans for a subset of subjects. Additionally, because
different diffusion acquisition protocols for repeated scanswere used in
this study, we had the unique opportunity to analyze the effect of using
different DTI protocols when assessing the effects of developmental
changes on diffusion metrics. The two protocols differed mainly in the
resolution of the images and the number of diffusionweighted volumes.
However, the different protocols for the repeated scansmay be seen as a
complicating factor because the experimental noise is not constant
across replicates. Moreover, in our model we assume that the experi-
mental noise for all scans is drawn from the same distribution. We
used Monte Carlo simulations to assess if different experimental noise
distributions for repeated scanswould negatively affect our ability to es-
timate both fixed effects (A and B) and biological variability (σb) with
our model. The results of these simulations showed convincingly that
there were no adverse effects from using a single pooled variance
noise term in the model.

Moreover, additional Monte Carlo simulation tests have demon-
strated that given our experimental conditionswe can achieve unbiased
estimates of the slope and intercept (population value of FA and MD at
the age of 14.2 years) of the developmental trajectories for both FA and
MD. The error in the estimate of the intercept is expected to be lower
than 2%, while the uncertainty in the estimate of the slope is much
higher (up to 57%). Finally the model appeared quite robust in separat-
ing experimental noise (uncorrelated across repeats) from biological
variability (correlated across repeats).

After having tested the reliability of our model using Monte Carlo
simulations, we applied the model to the pediatric data. We observed
widespread changes in FA and MD resulting from brain maturation in
both cDTI and eDTI from childhood into adulthood. Previous early de-
velopmental studies have shown a rapid increase in FA and decrease
in MD in the early years of life, especially during the first 12 months
(Hermoye et al., 2006; Sadeghi et al., 2013a, 2013b). However, matura-
tion of white matter continues at a slower rate into adolescence and
even adulthood (Lebel and Beaulieu, 2011). In this study, we found a
continued maturation for most white matter regions and deep gray
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matter structures during adolescence; these findings are similar to
those of previous studies (Schmithorst et al., 2002; Ashtari et al., 2007;
Bonekamp et al., 2007; Lebel et al., 2008; Lebel and Beaulieu, 2011).

In a study by Bonekamp et al., 2007, FAwas shown to increase signif-
icantly from 5.5 to 19.1 years in ALIC, SLF, and cingulum in agreement
with our findings. In addition, we found a significant age effect in the
FA trajectory of SCC (lateral) in eDTI scans. Significant FA increase was
also observed in CST, MCP, BCC, GIC, and deep gray matter regions in
both cDTI and eDTI. Different factors may give origin to significant
differences in tensor-derived metrics in different regions. For example,
in deep gray matter regions such as the caudate and putamen where
anisotropy is low, we observed a significant increase of FA with age.
This phenomenon might represent a true biological effect, but it may
also be related to a decrease in SNR due to reduced water content
with maturation. We know from the literature, that FA has an upward
bias if SNR is low (Pierpaoli and Basser, 1996). Therefore, the increase
in FA might be due to lower SNR rather than to actual micro structural
changes in this region. Moreover, in addition to assessing if effects
reach statistical significance, one should also look at their magnitude.
For caudate and putamen the slope was 1.52 × 10−3 − 2.09 × 10−3 in
eDTI scans and 2.03 × 10−3 − 2.73 × 10−3 in cDTI, which, although
significant, is a smaller value than what was found in virtually all
white matter regions that reach statistical significance. The age effect
of small magnitude was significant in both caudate and putamen
because of the low inter-subject variability in these regions.

Brain maturation in the internal capsule and corticospinal tracts has
also been reported by others (Schmithorst et al., 2002; Barnea-Goraly
et al., 2005). We found a significant increase in FA and decrease in MD
in the anterior limb (ALIC) and genu of the internal capsule, but no
significant increase was observed in FA of the posterior limb of the
internal capsule (PLIC). It is known that brain maturation follows a
spatio-temporal pattern from posterior to anterior and central to
peripheral regions, i.e., the PLIC matures earlier than ALIC. Most of
Fig. 7. Sources of variability. Left: biological variability and experimental n
the maturational changes in PLIC may have occurred before the
age of the youngest children included in our sample (4 year old).
From the age of four to adulthood we see much greater changes of
FA in ALIC (slope = 3.83 × 10−3 − 4.79 × 10−3) than in PLIC
(slope = 0.21 × 10−3 − 0.80 × 10−3).

Bonekamp et al.(2007), also reported significant reduction in ADC in
13 out of the 15 brain regions they examined. Eight of these regions
were similar to areas we analyzed in this study: GCC, BCC, SCC,
cingulum, SLF, ALIC, PLIC, and CST. We found significant decrease in
MD in these regions as was previously reported. In addition, we
found significant decrease of MD with age in BCC and GCC (medial)
in both cDTI and eDTI scans, and GCC (lateral) in eDTI scans. The
slope of MD for BCC was −6.73 × 10−6mm2s−1 for eDTI scans
and−7.73 × 10−6mm2s−1 for cDTI scans, which was the highest re-
duction inMD per year for cDTI scans among all the regions analyzed.
Bonekamp et al.(2007), also had reported a reduction in ADC for BCC.
However, changes in ADC were not significant in BCC in their study,
most likely due to high variability among subjects. The magnitude
of changes was not reported in that study, so we cannot compare
it here.

As mentioned earlier, we are interested in analyzing the effect of
protocol on the assessment of changes in diffusion metrics with age.
One would hope that the age effects in MD and FA are minimally influ-
enced by the protocol used, as these quantities should reflect inherent
developmental changes within subjects. However, we observed more
regions with significant age effects in MDwhen using the eDTI protocol
than when using the cDTI protocol. Specifically, out of 17 regions
analyzed, 16 regions showed a significant age effect for MD when eDTI
scans were used compared with 13 when cDTI scans were used.
Also fewer regions showed a significant age effect with FA compared
with MD.

In some regions, the eDTI protocol may be more sensitive to detect-
ing changes with age as this protocol has higher resolution and
oise of FA. Right: biological variability and experimental noise of MD.
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consequently suffers less from partial volume contamination. For exam-
ple, age shows a significant effect for MD in ML for eDTI scans, but not
for cDTI scans. This difference may arise by the fact that ML is a small
structure surrounded by CSF and therefore parenchymal changes may
bemasked by CSF partial volume contaminationwhen the cDTI protocol
is used (Fig. 5). In addition to evaluating protocol dependent differ-
ences, ourmain objectivewas to analyze the variance of diffusion tensor
derived quantities and the role of potential contributors to the observed
variability. Previous Monte Carlo simulation studies have shown that,
for a given SNR, the variance of FA increases as anisotropy decreases.
Moreover, for constant anisotropy, the variance of FA increases as SNR
decreases (Pierpaoli and Basser, 1996). It is also worth noting that
SNR is lower in white matter regions compared with gray matter and
CSF regions because of T2* weighting of the DWIs. The observed larger
experimental noise related variance found in this study in white matter
regions comparedwith that of the graymatter regions is consistentwith
the lower SNR in white matter; this finding confirms previous observa-
tions (Walker et al., 2012). The variance of FA in deep gray matter
regions (putamen, caudate, and thalamus) was very low compared to
that of other regions analyzed. Farrell et al.(2007), reported a larger
coefficient of variation (variance divided by mean) of FA in deep gray
matter (putamen) compared to that of adjacent white matter (internal
capsule), which is in apparent disagreement with our results. However,
they reported the coefficient of variation of FA, andherewe reported the
variance of FA. We argue that the coefficient of variation is not a good
metric in isotropic regions as the denominator approaches zero, which
can lead to artificially high values. Our analysis showed that experimen-
tal noise is a larger fraction of the overall variance of FA in gray matter
(red regions in Fig. 7) compared with the majority of the white matter
regions. Similar to FA, MD in gray matter regions showed small total
variance, with most of the variance attributed to experimental noise.

A majority of white matter regions, with the exception of the body
and splenium of the corpus callosum and the optic radiations, also
showed small total variance of MD. In these regions, biological variabil-
ity was the main source of observed variability. Optic radiation is a re-
gion close to the periphery that has a higher structural inter-subject
variability. Part of the observed biological variability could be due to
morphological differences existing in the population that are not fully
accounted for by the registration.

Another interesting finding in this study is the large variance of FA
and low variance of MD in cingulum and SLF. Cingulum is an area
surrounded by CSFwhere a slightmisregistration can have a substantial
effect on values of MD. Given that the cingulum is surrounded by CSF,
which has a much larger diffusivity than the parenchyma, the relatively
small variance of MDwemeasured in this region indicates a good regis-
tration between subjects for this structure and demonstrates that the
large levels of variance of FA are not due to misregistration. A closer
look at contributors to variance indicates that the main source of
variability in FA of cingulum and SLF are due to biological variability
and not experimental noise (Fig. 7). The low variance of MD and high
variance of FA for cingulum can be a further indicator that MD and FA
are complementary measurements and that they reflect different phys-
iological processes. MD is related to the overall water content, while FA
is more related to the architecture of the underlying tissue. A longitudi-
nal study by Lebel et al. (Lebel and Beaulieu, 2011) (age range 5–32
years) reported that FA in cingulum and SLF in many, but not all,
young adults was increasing, showing the diversity of brain develop-
ment in these regions. Many psychiatric disorders such as bipolar disor-
der and schizophrenia emerge in adolescence and young adulthood
(Paus et al., 2008), and are related to white matter abnormalities in
frontal areas, uncinate, cingulum, and inferior and superior longitudinal
fasciculus (Lim et al., 1999; Kubicki et al., 2007; Heng et al., 2010). The
large biological variability of FA between subjects in these areas is indic-
ative of underlying microstructural differences between subjects that
might be important in studying risk factors related to psychiatric
disorders.
Conclusions

In this study, we showed continuous brain maturation from
childhood to adulthood using two different diffusion protocols. We
highlighted the potential differences in observed measurements based
on the protocol. For a majority of the regions, using different protocols
introduced differences in the measured averages of FA and MD, but
the rate of change of diffusion metrics with age was unaffected.

This study has some limitations.We had only two repeated scans per
subject. Ideally, we would like to have many repeats per subject for a
robust estimation of biological variability and experimental noise. The
results of our Monte Carlo simulations, however, showed that we are
able to achieve reliable estimates of most parameters in our model
with the experimental data set available to us. It is worth noting that
we did not add gender as a covariate in our model because of the
small sample size. Longitudinal DTI studies have reported no gender
differences during adolescence (Bava et al., 2010; Giorgio et al., 2010),
or few differences with small magnitude (Lebel and Beaulieu, 2011).
We also note that physiological noise can present itself as biological
variability; for example, artifacts related to cardiac pulsation can mani-
fest as biological variability. The fundamental assumption of our model
is that biological features will be consistently present in repeated scans.
Physiological noise can present this characteristic. Even though cardiac
pulsation is due to the biology of the individual subject, it is not related
to brain structure. The same is true for brain morphological variability
thatmight not be adequately accounted for by the spatial normalization
step. In our model if the shape of a region of a subject's brain is highly
abnormal and that region is consistently misregistered to the template,
the biological variability component, not the experimental noise
component, would increase.

Despite these limitations, to our knowledge this is the first popula-
tion study that attempts to divide the total variability of MRI metrics
into components of biological variability and experimental noise in
population studies. By doing so, we enable the identification of regions
that show biological differences within the population. This study
provides valuable information about the variability of FA and MD in
population of typically developing children. It should be expected that
regions showing high biological variability of the diffusion MRI metrics
within the population should be the most likely to show correlation
with cognitive and behavioral metrics that assess brain development.
The methodology presented here can be extended to the analysis of
other conditions such as aging and neuro-degeneration.
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Fig. A.1. Plots of fractional anisotropy (FA) versus age for white matter and gray matter regions.

Appendix A. Plots of FA versus age

Fig. A.1 displays trajectories of fractional anisotropy for all of the regions analyzed.
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Fig. B.1. Plots of mean diffusivity (MD (μm2/s)) versus age for white matter and gray matter regions.

Appendix B. Plots of MD versus age

Fig. B.1 displays trajectories of mean diffusivity for all of the regions analyzed.
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Appendix C. Sources of variability for AD and RD

Fig. C.1 displays sources of variability for axial and radial diffusivity.

Fig. C.1. Sources of variability. Left: biological variability and experimental noise of axial diffusivity (AD). Right: biological variability and experimental noise of radial diffusivity (RD).
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